Answer:
The average rate of change is 22
Step-by-step explanation:
Given
[tex]f(x) = x^4 - 5x[/tex]
Required
Average rate of change over [0,3]
This is calculated as:
[tex]Rate = \frac{f(b) - f(a)}{b - a}[/tex]
So, we have:
[tex]Rate = \frac{f(3) - f(0)}{3 - 0}[/tex]
[tex]Rate = \frac{f(3) - f(0)}{3}[/tex]
Calculate f(3) and f(0)
[tex]f(x) = x^4 - 5x[/tex]
[tex]f(3) = 3^4 - 5 * 3 =66[/tex]
[tex]f(0) = 0^4 - 5 * 0 = 0[/tex]
So, we have:
[tex]Rate = \frac{f(3) - f(0)}{3}[/tex]
[tex]Rate = \frac{66-0}{3}[/tex]
[tex]Rate = \frac{66}{3}[/tex]
[tex]Rate = 22[/tex]