Respuesta :

Answer:

C

Step-by-step explanation:

We are given that:

[tex]\sin \theta +\csc \theta = 2[/tex]

And we want to find the value of:

[tex]\sin^2\theta + \csc^2\theta[/tex]

From the first equation, we can square both sides:

[tex](\sin \theta + \csc \theta)^2=(2)^2[/tex]

Square:

[tex]\sin ^2\theta +2\sin\theta\csc\theta +\csc^2\theta =4[/tex]

Let csc(θ) = 1 / sin(θ):

[tex]\displaystyle \sin ^2\theta +2\sin\theta\left(\frac{1}{\sin \theta}\right) +\csc^2\theta =4[/tex]

Simplify:

[tex]\displaystyle \sin ^2\theta +2(1) +\csc^2\theta =4[/tex]

Therefore:

[tex]\sin ^2\theta + \csc^2\theta =2[/tex]

Our answer is C.

B) 4 is the answer I believe