Respuesta :
Answer:
C
Step-by-step explanation:
We are given that:
[tex]\sin \theta +\csc \theta = 2[/tex]
And we want to find the value of:
[tex]\sin^2\theta + \csc^2\theta[/tex]
From the first equation, we can square both sides:
[tex](\sin \theta + \csc \theta)^2=(2)^2[/tex]
Square:
[tex]\sin ^2\theta +2\sin\theta\csc\theta +\csc^2\theta =4[/tex]
Let csc(θ) = 1 / sin(θ):
[tex]\displaystyle \sin ^2\theta +2\sin\theta\left(\frac{1}{\sin \theta}\right) +\csc^2\theta =4[/tex]
Simplify:
[tex]\displaystyle \sin ^2\theta +2(1) +\csc^2\theta =4[/tex]
Therefore:
[tex]\sin ^2\theta + \csc^2\theta =2[/tex]
Our answer is C.