Answer:
The magnitude of the force is 64.634 newtons.
Explanation:
According to the statement, the crate is a constant mass system, whose upward force is described by the following expression:
[tex]F(t) = m\cdot \ddot{y} (t)[/tex] (1)
Where:
[tex]F(t)[/tex] - Force, in newtons.
[tex]m[/tex] - Mass, in kilograms.
[tex]\ddot {y}(t)[/tex] - Acceleration, in meters per square second.
The function acceleration is obtained by deriving the function position twice in time:
[tex]\dot y (t) = 2.80 + 1.83\cdot t^{2}[/tex] (2)
[tex]\ddot y(t) = 3.66\cdot t[/tex] (3)
And we expand (1) by applying (3):
[tex]F(t) = 3.66\cdot m \cdot t[/tex]
Where [tex]t[/tex] is the time, in seconds.
If we know that [tex]m = 4.76\,kg[/tex] and [tex]t = 3.71\,s[/tex], then the magnitude of the force is:
[tex]F = 3.66\cdot (4.76)\cdot (3.71)[/tex]
[tex]F = 64.634\,N[/tex]
The magnitude of the force is 64.634 newtons.