Respuesta :

Given:

[tex]\tan 8\theta =\cot 7\theta[/tex]

To find:

The value of [tex]\theta[/tex].

Solution:

We have,

[tex]\tan 8\theta =\cot 7\theta[/tex]

We know that, [tex]\cot \theta =\tan (90^\circ -\theta)[/tex].

Using the trigonometric property, we get

[tex]\tan 8\theta =\tan (90^\circ -7\theta)[/tex]

On comparing both sides, we get

[tex]8\theta =90^\circ -7\theta[/tex]

[tex]8\theta +7\theta=90^\circ [/tex]

[tex]15\theta=90^\circ [/tex]

Divide both sides by 15.

[tex]\theta=\dfrac{90^\circ}{15}[/tex]

[tex]\theta=6^\circ[/tex]

Therefore, the value of [tex]\theta[/tex] is 6 degrees.

Otras preguntas