URGENT: If θ is a second-quadrant angle and cosθ = -2/3, then tanθ = _____.
![URGENT If θ is a secondquadrant angle and cosθ 23 then tanθ class=](https://us-static.z-dn.net/files/de3/930e7806173b034907fe6b55d753bd4d.jpg)
In the second quadrant, both cos and tan are negative while only sin is positive.
To find tan, we will use the following property below:
[tex] \large \boxed{ {tan}^{2} \theta = {sec}^{2} \theta - 1}[/tex]
Sec is the reciprocal of cos. If cos is a/b then sec is b/a. Since cos is 2/3 then sec is 3/2
[tex] \large{ {tan}^{2} \theta = {( - \frac{3}{2}) }^{2} - 1} \\ \large{ {tan}^{2} \theta = \frac{9}{4} - 1} \\ \large{ {tan}^{2} \theta = \frac{9}{4} - \frac{4}{4} \longrightarrow \frac{5}{4} } \\ \large{tan \theta = \frac{ \sqrt{5} }{ \sqrt{4} } } \\ \large \boxed{tan \theta = \frac{ \sqrt{5} }{2} }[/tex]
Since tan is negative in the second quadrant. Hence,
[tex] \large{ \cancel{ tan \theta = \frac{ \sqrt{5} }{2} } \longrightarrow \boxed{tan \theta = - \frac{ \sqrt{5} }{2} }}[/tex]
Answer