Respuesta :

Answer:

(x - 3)² + (y + 5)² = 10

Step-by-step explanation:

The equation of a circle in standard form is

(x - h)² + (y - k)² = r²

where (h, k) are the coordinates of the centre and r is the radius

Here (h, k) = (3, - 5 ) , then

(x - 3)² + (y - (- 5) )² = r² , that is

(x - 3)² + (y + 5)² = r²

r is the distance from the centre to a point on the line

Calculate r using the distance formula

r = [tex]\sqrt{(x_{2}-x_{1})^2+(y_{2}-y_{1})^2 }[/tex]

with (x₁, y₁ ) = (3, - 5) and (x₂, y₂ ) = (6, - 4)

r = [tex]\sqrt{(6-3)^2+(-4+5)^2}[/tex]

  = [tex]\sqrt{3^2+1^2}[/tex]

  = [tex]\sqrt{9+1}[/tex]

   = [tex]\sqrt{10}[/tex] ⇒ r² = ([tex]\sqrt{10}[/tex] )² = 10

(x - 3)² + (y + 5)² = 10 ← equation of circle

Otras preguntas

ACCESS MORE