Respuesta :
[tex]\huge\bold{Given :}[/tex]
Product of two integers = - 112
One of the integer = -8
[tex]\huge\bold{To\:find :}[/tex]
The other integer.
[tex]\large\mathfrak{{\pmb{\underline{\orange{Solution}}{\orange{:}}}}}[/tex]
[tex]\sf\blue{The \:other \:integer\:is\: 14.}[/tex]
[tex]\large\mathfrak{{\pmb{\underline{\red{Step-by-step\:explanation}}{\red{:}}}}}[/tex]
Let the other integer be [tex]x[/tex].
As per the question, we have
[tex]Product \: \: of \: \: two \: \: integers = - 112[/tex]
➼ [tex] \: - 8 \times x = - 112[/tex]
➼ [tex] \: x = \frac{ - 112}{ - 8} [/tex]
➼ [tex] \: x = 14[/tex]
[tex]\sf\purple{Therefore,\:the\:other\:integer\:x\:is\:14.}[/tex]
[tex]\huge\bold{To\:verify :}[/tex]
[tex] - 8 \times 14 = - 112[/tex]
➺ [tex] \: - 112 = - 112[/tex]
➺ L. H. S. = R. H. S
Hence verified.
[tex]\huge{\textbf{\textsf{{\orange{My}}{\blue{st}}{\pink{iq}}{\purple{ue}}{\red{35}}{\green{♨}}}}}[/tex]
Answer:
If the product of two integers is -112 and one of them is -8, that means the value of the second integer would be 14.
Step-by-step explanation:
The product of two integers equals -112 means that there are two numbers that, when multiplied, were equivalent to -112. Since you know one of the integers is -8, you can infer that the second integer is both a positive number AND the remainder of [tex]\frac{-112}{-8}[/tex] or 14.