Respuesta :

Answer:

See below

Step-by-step explanation:

We want to prove that

[tex]\sin(x)\tan(x) = \dfrac{1}{\cos(x)} - \cos(x), \forall x \in\mathbb{R}[/tex]

Taking the RHS, note

[tex]\dfrac{1}{\cos(x)} - \cos(x) = \dfrac{1}{\cos(x)} - \dfrac{\cos(x) \cos(x)}{\cos(x)} = \dfrac{1-\cos^2(x)}{\cos(x)}[/tex]

Remember that

[tex]\sin^2(x) + \cos^2(x) =1 \implies 1- \cos^2(x) =\sin^2(x)[/tex]

Therefore,

[tex]\dfrac{1-\cos^2(x)}{\cos(x)} = \dfrac{\sin^2(x)}{\cos(x)} = \dfrac{\sin(x)\sin(x)}{\cos(x)}[/tex]

Once

[tex]\dfrac{\sin(x)}{\cos(x)} = \tan(x)[/tex]

Then,

[tex]\dfrac{\sin(x)\sin(x)}{\cos(x)} = \sin(x)\tan(x)[/tex]

Hence, it is proved

ACCESS MORE