Guys please help me
![Guys please help me class=](https://us-static.z-dn.net/files/d17/56419262c58a17a1bcec397ca9562ee0.jpg)
Answer:
1)[tex]t=2.26\: s[/tex]
2)[tex]S=33.9\: m[/tex]
3)[tex]v=26.77\: m/s[/tex]
4)[tex]\alpha=55.92[/tex]
Explanation:
1)
We can use the following equation:
[tex]y_{f}=y_{0}+v_{iy}t-0.5*g*t^{2}[/tex]
Here, the initial velocity in the y-direction is zero, the final y position is zero and the initial y position is 25 m.
[tex]0=25-0.5*9.81*t^{2}[/tex]
[tex]t=2.26\: s[/tex]
2)
The equation of the motion in the x-direction is:
[tex]v_{ix}=\frac{S}{t}[/tex]
[tex]15=\frac{S}{2.26}[/tex]
[tex]S=33.9\: m[/tex]
3)
The velocity in the y-direction of the stone will be:
[tex]v_{fy}=v_{iy}-gt[/tex]
[tex]v_{fy}=0-(9.81*2.26)[/tex]
[tex]v_{fy}=-22.17\: m/s[/tex]
Now, the velocity in the x-direction is 15 m/s then the velocity will be:
[tex]v=\sqrt{v_{x}^{2}+v_{fy}^{2}}=\sqrt{15^{2}+(-22.17)^{2}}[/tex]
[tex]v=26.77\: m/s[/tex]
4)
The angle of this velocity is:
[tex]tan(\alpha)=\frac{22.17}{15}[/tex]
[tex]\alpha=tan^{-1}(\frac{22.17}{15})[/tex]
[tex]\alpha=55.92[/tex]
Then α=55.92° negative from the x-direction.
I hope it helps you!