Respuesta :

Answer:

1)[tex]t=2.26\: s[/tex]

2)[tex]S=33.9\: m[/tex]

3)[tex]v=26.77\: m/s[/tex]

4)[tex]\alpha=55.92[/tex]

Explanation:

1)

We can use the following equation:

[tex]y_{f}=y_{0}+v_{iy}t-0.5*g*t^{2}[/tex]

Here, the initial velocity in the y-direction is zero, the final y position is zero and the initial y position is 25 m.

[tex]0=25-0.5*9.81*t^{2}[/tex]

[tex]t=2.26\: s[/tex]

2)

The equation of the motion in the x-direction is:

[tex]v_{ix}=\frac{S}{t}[/tex]

[tex]15=\frac{S}{2.26}[/tex]

[tex]S=33.9\: m[/tex]

3)

The velocity in the y-direction of the stone will be:

[tex]v_{fy}=v_{iy}-gt[/tex]

[tex]v_{fy}=0-(9.81*2.26)[/tex]

[tex]v_{fy}=-22.17\: m/s[/tex]

Now, the velocity in the x-direction is 15 m/s then the velocity will be:

[tex]v=\sqrt{v_{x}^{2}+v_{fy}^{2}}=\sqrt{15^{2}+(-22.17)^{2}}[/tex]

[tex]v=26.77\: m/s[/tex]

4)

The angle of this velocity is:

[tex]tan(\alpha)=\frac{22.17}{15}[/tex]

[tex]\alpha=tan^{-1}(\frac{22.17}{15})[/tex]

[tex]\alpha=55.92[/tex]

Then α=55.92° negative from the x-direction.

I hope it helps you!