Given:
In a right angle triangle ABC, [tex]m\angle C=90^\circ , a=4[/tex] and [tex]\sin A=\dfrac{1}{2}[/tex].
To find:
The length of the hypotenuse.
Solution:
It is given that [tex]m\angle C[/tex], so opposite side of this angle is the hypotenuse, i.e., c.
In a right angle triangle,
[tex]\sin \theta=\dfrac{Perpendicular}{Hypotenuse}[/tex]
In the given triangle,
[tex]\sin A=\dfrac{a}{c}[/tex]
Substituting the given values, we get
[tex]\dfrac{1}{2}=\dfrac{4}{c}[/tex]
By cross multiplication, we get
[tex]1\times c=4\times 2[/tex]
[tex]c=8[/tex]
Therefore, the length of the hypotenuse is 8 units.