Respuesta :
Given:
Consider the below figure attached with this question.
The rate of change of the linear function is -8.
To find:
The value of a.
Solution:
If a linear function passes through the points [tex](x_1,y_1)[/tex] and [tex](x_2,y_2)[/tex], then the rate of change of the linear function is:
[tex]m=\dfrac{y_2-y_1}{x_2-x_1}[/tex]
From the given table, it is clear that the linear function passes through the points (10,27) and (11,a). So, the slope of the linear function is:
[tex]m=\dfrac{a-27}{11-10}[/tex]
[tex]m=\dfrac{a-27}{1}[/tex]
[tex]m=a-27[/tex]
The rate of change of the linear function is -8.
[tex]-8=a-27[/tex]
[tex]-8+27=a[/tex]
[tex]19=a[/tex]
Therefore, the value of a is 19.
![Ver imagen erinna](https://us-static.z-dn.net/files/d06/64e08500b3c7364e49eb82b0b2e22940.jpeg)