In order for the data in the table to represent a linear function with a rate of change of –8, what must be the value of a?

Respuesta :

Given:

Consider the below figure attached with this question.

The rate of change of the linear function is -8.

To find:

The value of a.

Solution:

If a linear function passes through the points [tex](x_1,y_1)[/tex] and [tex](x_2,y_2)[/tex], then the rate of change of the linear function is:

[tex]m=\dfrac{y_2-y_1}{x_2-x_1}[/tex]

From the given table, it is clear that the linear function passes through the points (10,27) and (11,a). So, the slope of the linear function is:

[tex]m=\dfrac{a-27}{11-10}[/tex]

[tex]m=\dfrac{a-27}{1}[/tex]

[tex]m=a-27[/tex]

The rate of change of the linear function is -8.

[tex]-8=a-27[/tex]

[tex]-8+27=a[/tex]

[tex]19=a[/tex]

Therefore, the value of a is 19.

Ver imagen erinna

Answer:

it is C

Step-by-step explanation:

ACCESS MORE