Step-by-step explanation:
The power reducing formulas are given by the following:
[tex]\sin^2 x = \dfrac{1- \cos2x}{2}[/tex]
[tex]\cos^2 x = \dfrac{1+ \cos2x}{2}[/tex]
We can then write the given expression as
[tex]\sin^25x \cos^25x[/tex]
[tex]= \left(\dfrac{1- \cos 2(5x)}{2} \right) \left(\dfrac{1+ \cos 2(5x)}{2} \right)[/tex]
[tex]= \dfrac{1}{4}(1- \cos 10x)(1+ \cos 10x)[/tex]
[tex]= \dfrac{1}{4}(1- \cos^2 10x)[/tex]
[tex]= \dfrac{1}{4} \left(\dfrac{1- \cos 20x}{2} \right)[/tex]
or
[tex]\sin^25x \cos^25x= \dfrac{1}{8}(1- \cos 20x)[/tex]