Make a substitution to express the integrand as a rational function and then evaluate the integral. (Remember to use absolute values where appropriate. Use C for the constant of integration.) x 49 x dx

Respuesta :

Answer:

[tex]\int{\frac{\sqrt{x + 49}}{x}} \, dx =2\sqrt{x + 49} +49\ln|\frac{\sqrt{x + 49}-7}{\sqrt{x + 49}+7}|+c[/tex]

Step-by-step explanation:

Given

[tex]\int\limits {\frac{\sqrt{x + 49}}{x}} \, dx[/tex]

Required

Solve by substitution

Let:

[tex]u = \sqrt{x + 49}[/tex]

Square both sides

[tex]u^2 = x + 49[/tex]

Differentiate

[tex]2udu = dx[/tex]

Also notice that:

[tex]x = u^2 - 49[/tex]

So, we have:

[tex]\int\limits {\frac{\sqrt{x + 49}}{x}} \, dx =\int\limits {\frac{u}{u^2 - 49}} \, 2udu[/tex]

[tex]\int\limits {\frac{\sqrt{x + 49}}{x}} \, dx =\int\limits {\frac{2u^2}{u^2 - 49}} \, du[/tex]

Add 0 to the numerator

[tex]\int\limits {\frac{\sqrt{x + 49}}{x}} \, dx =\int\limits {\frac{2u^2+0}{u^2 - 49}} \, du[/tex]

Express 0 as 98 -98

[tex]\int\limits {\frac{\sqrt{x + 49}}{x}} \, dx =\int\limits {\frac{2u^2-98+98}{u^2 - 49}} \, du[/tex]

Split the fraction

[tex]\int{\frac{\sqrt{x + 49}}{x}} \, dx =\int( \frac{2u^2-98}{u^2 - 49}+\frac{98}{u^2 - 49} )\, du[/tex]

[tex]\int{\frac{\sqrt{x + 49}}{x}} \, dx =\int( \frac{2(u^2-49)}{u^2 - 49}+\frac{98}{u^2 - 49} )\, du[/tex]

[tex]\int{\frac{\sqrt{x + 49}}{x}} \, dx =\int( 2+\frac{98}{u^2 - 49} )\, du[/tex]

Rewrite as:

[tex]\int{\frac{\sqrt{x + 49}}{x}} \, dx =\int( 2+\frac{98}{u^2 - 7^2} )\, du[/tex]

Integrate

[tex]\int{\frac{\sqrt{x + 49}}{x}} \, dx =2u +\int\frac{98}{u^2 - 7^2} \, du[/tex]

Remove constant (98)

[tex]\int{\frac{\sqrt{x + 49}}{x}} \, dx =2u +98\int\frac{1}{u^2 - 7^2} \, du[/tex]

As a general rule,

[tex]\int \frac{1}{x^2 - a^2} \, dx = \frac{1}{2}\ln|\frac{x-a}{x+a}|[/tex]

So, we have:

[tex]\int \frac{1}{u^2 - 7^2} \, du = \frac{1}{2}\ln|\frac{u-7}{u+7}|[/tex]

[tex]\int{\frac{\sqrt{x + 49}}{x}} \, dx =2u +98\frac{1}{u^2 - 7^2} \, du[/tex] becomes

[tex]\int{\frac{\sqrt{x + 49}}{x}} \, dx =2u +98*\frac{1}{2}\ln|\frac{u-7}{u+7}|+c[/tex]

[tex]\int{\frac{\sqrt{x + 49}}{x}} \, dx =2u +49\ln|\frac{u-7}{u+7}|+c[/tex]

Substitute values for u

[tex]\int{\frac{\sqrt{x + 49}}{x}} \, dx =2\sqrt{x + 49} +49\ln|\frac{\sqrt{x + 49}-7}{\sqrt{x + 49}+7}|+c[/tex]

ACCESS MORE