Respuesta :

Given:

The sequence is:

[tex]-3,5,13,21...[/tex]

To find:

The explicit formula for the given sequence then find the 47th term.

Solution:

We have,

[tex]-3,5,13,21...[/tex]

The difference between two consecutive terms are:

[tex]5-(-3)=8[/tex]

[tex]13-5=8[/tex]

[tex]21-13=8[/tex]

The given sequence has a common difference. So, the given sequence is an arithmetic sequence with first term -3 and common difference 8.

The explicit formula for an arithmetic sequence is:

[tex]a_n=a+(n-1)d[/tex]

Where, a is the first term and d is the common difference.

Putting [tex]a=-3[/tex] and [tex]d=8[/tex] in the above formula, we get

[tex]a_n=-3+(n-1)8[/tex]

[tex]a_n=-3+8n-8[/tex]

[tex]a_n=8n-11[/tex]

Putting [tex]n=47[/tex], we get

[tex]a_{47}=8(47)-11[/tex]

[tex]a_{47}=376-11[/tex]

[tex]a_{47}=365[/tex]

Therefore, the explicit formula for the given sequence is [tex]a_n=8n-11[/tex] and the 47th term is 365.

Otras preguntas