Respuesta :
The question is incomplete. The complete question is :
The pressure difference, Δp, ac[tex]K_u[/tex]ross a partial blockage in an artery (called a stenosis) is approximated by the equation :
[tex]$\Delta p=K_v\frac{\mu V}{D}+K_u\left(\frac{A_0}{A_1}-1\right)^2 \rho V^2$[/tex]
Where V is the blood velocity, μ the blood viscosity {FT/L2}, ρ the blood density {M/L3}, D the artery diameter, [tex]A_0[/tex] the area of the unobstructed artery, and A1 the area of the stenosis. Determine the dimensions of the constants [tex]K_v[/tex] and [tex]K_u[/tex]. Would this equation be valid in any system of units?
Solution :
From the dimension homogeneity, we require :
[tex]$\Delta p=K_v\frac{\mu V}{D}+K_u\left(\frac{A_0}{A_1}-1\right)^2 \rho V^2$[/tex]
Here, x means dimension of x. i.e.
[tex]$[ML^{-1}T^{-2}]=\frac{[K_v][ML^{-1}T^{-1}][LT^{-1}]}{[L]}+[K_u][1][ML^{-3}][L^2T^{-2}]$[/tex]
[tex]$=[K_v][ML^{-1}T^{-2}]+[K_u][ML^{-1}T^{-2}]$[/tex]
So, [tex]$[K_u]=[K_v]=[1 ]=$[/tex] dimensionless
So, [tex]K_u[/tex] and [tex]K_v[/tex] are dimensionless constants.
This equation will be working in any system of units. The constants [tex]K_u[/tex] and [tex]K_v[/tex] will be different for different system of units.