Respuesta :

Answer:

[tex]\angle ABC = 112.6^o[/tex]

[tex]DE =105[/tex]

Step-by-step explanation:

Given

See attachment for complete question

Required

[tex]\angle ABC[/tex] and side length DC

 Calculating [tex]\angle ABC[/tex]

First, calculate [tex]\angle EBC[/tex]

[tex]\angle EBC + \angle BCE + 90 = 180[/tex] --- angles in a triang;e

[tex]\angle BCE =\angle BCD = 67.4[/tex]

So:

[tex]\angle EBC + 67.4+ 90 = 180[/tex]

[tex]\angle EBC + 157.4 = 180[/tex]

Collect like terms

[tex]\angle EBC = 180-157.4[/tex]

[tex]\angle EBC = 22.6[/tex]

So:

[tex]\angle ABC = \angle EBC +90[/tex]

[tex]\angle ABC = 22.6 +90[/tex]

[tex]\angle ABC = 112.6^o[/tex]

Calculating DC

First, calculate EC using Pythagoras theorem.

[tex]BC^2 = BE^2 + EC^2[/tex]

[tex]65^2 = 60^2 + EC^2[/tex]

[tex]4225 = 3600 + EC^2[/tex]

Collect like terms

[tex]EC^2 =4225 - 3600[/tex]

[tex]EC^2 =625[/tex]

Take square roots

[tex]EC = 25[/tex]

Length DC is:

[tex]DC = DE + EC[/tex]

Where

[tex]DE = AB =80[/tex]

So:

[tex]DE =80+25[/tex]

[tex]DE =105[/tex]

Ver imagen MrRoyal

Answer:

ABC= 112.6

DC= 105

Step-by-step explanation:

got it right on edge!