Respuesta :
Answer:
[tex]\angle ABC = 112.6^o[/tex]
[tex]DE =105[/tex]
Step-by-step explanation:
Given
See attachment for complete question
Required
[tex]\angle ABC[/tex] and side length DC
Calculating [tex]\angle ABC[/tex]
First, calculate [tex]\angle EBC[/tex]
[tex]\angle EBC + \angle BCE + 90 = 180[/tex] --- angles in a triang;e
[tex]\angle BCE =\angle BCD = 67.4[/tex]
So:
[tex]\angle EBC + 67.4+ 90 = 180[/tex]
[tex]\angle EBC + 157.4 = 180[/tex]
Collect like terms
[tex]\angle EBC = 180-157.4[/tex]
[tex]\angle EBC = 22.6[/tex]
So:
[tex]\angle ABC = \angle EBC +90[/tex]
[tex]\angle ABC = 22.6 +90[/tex]
[tex]\angle ABC = 112.6^o[/tex]
Calculating DC
First, calculate EC using Pythagoras theorem.
[tex]BC^2 = BE^2 + EC^2[/tex]
[tex]65^2 = 60^2 + EC^2[/tex]
[tex]4225 = 3600 + EC^2[/tex]
Collect like terms
[tex]EC^2 =4225 - 3600[/tex]
[tex]EC^2 =625[/tex]
Take square roots
[tex]EC = 25[/tex]
Length DC is:
[tex]DC = DE + EC[/tex]
Where
[tex]DE = AB =80[/tex]
So:
[tex]DE =80+25[/tex]
[tex]DE =105[/tex]
![Ver imagen MrRoyal](https://us-static.z-dn.net/files/dc0/77dc985df961d098e452d2eab4bae75d.png)
Answer:
ABC= 112.6
DC= 105
Step-by-step explanation:
got it right on edge!