A rectangular metal tank with an open top is to hold cubic feet of liquid. What are the dimensions of the tank that require the least material to%E2%80%8B build?

Respuesta :

Answer:

[tex]h = 3.5[/tex]

[tex]w = 7[/tex]

[tex]l = 7[/tex]

Step-by-step explanation:

Given

[tex]Volume = 171.5ft^3[/tex]

Required

The dimension that requires least material

The volume is:

[tex]Volume = lwh[/tex]

Where:

[tex]l \to length[/tex]

[tex]w \to width[/tex]

[tex]h \to height[/tex]

So, we have:

[tex]171.5 = lwh[/tex]

Make l the subject

[tex]l = \frac{171.5}{wh}[/tex]

The surface area (A) of an open-top rectangular tank is:

[tex]A = lw + 2lh + 2wh[/tex]

Substitute: [tex]l = \frac{171.5}{wh}[/tex]

[tex]A = \frac{171.5}{wh} * w + 2*\frac{171.5}{wh}*h + 2wh[/tex]

[tex]A = \frac{171.5}{h} + 2*\frac{171.5}{w} + 2wh[/tex]

[tex]A = \frac{171.5}{h} + \frac{343}{w} + 2wh[/tex]

Rewrite as:

[tex]A = 171.5h^{-1} + 343w^{-1} + 2wh[/tex]

Differentiate with respect to h and w

[tex]A_h = -171.5h^{-2} +2w[/tex]

[tex]A_w = -343w^{-2} +2h[/tex]

Equate both to 0

[tex]-171.5h^{-2} +2w=0[/tex]

Make w the subject

[tex]2w = 171.5h^{-2}[/tex]

Divide by 2

[tex]w = 85.75h^{-2}[/tex]

[tex]-343w^{-2} +2h = 0[/tex]

Make h the subject

[tex]2h = 343w^{-2}[/tex]

Divide by 2

[tex]h = 171.5w^{-2}[/tex]

[tex]h = \frac{171.5}{w^2}[/tex]

Substitute [tex]w = 85.75h^{-2}[/tex] in [tex]h = \frac{171.5}{w^2}[/tex]

[tex]h = \frac{171.5}{(85.75h^{-2})^2}[/tex]

[tex]h = \frac{171.5}{85.75^2*h^{-4}}[/tex]

[tex]h = \frac{2}{85.75*h^{-4}}[/tex]

Multiply both sides by [tex]h^{-4}[/tex]

[tex]h^{-4} * h = \frac{1}{85.75*h^{-4}} * h^{-4}[/tex]

[tex]h^{-3} = \frac{2}{85.75}[/tex]

Rewrite as:

[tex]\frac{1}{h^3} = \frac{2}{85.75}[/tex]

Inverse both sides

[tex]h^3 = 85.75/2[/tex]

[tex]h^3 = 42.875[/tex]

Take cube roots

[tex]h = 3.5[/tex] ---- height

Recall that: [tex]w = 85.75h^{-2}[/tex]

[tex]w = 85.75 * 3.5^{-2}[/tex]

[tex]w = 7[/tex] --- width

Recall that: [tex]l = \frac{171.5}{wh}[/tex]

[tex]l = \frac{171.5}{3.5 * 7}[/tex]

[tex]l = 7[/tex] --- length

ACCESS MORE