Find a formula for the described function. An open rectangular box with volume 3 m3 has a square base. Express the surface area SA of the box as a function of the length of a side of the base, x.

Respuesta :

Answer:

[tex]SA(x) = x^2 + \frac{12}{x}[/tex]

Step-by-step explanation:

Given

[tex]V = 3m^3[/tex] --- volume

[tex]x \to base\ length[/tex]

[tex]y \to height[/tex]

Required

The surface area as a function of base length

The volume (V) is calculated as:

[tex]V = Base\ Area * Height[/tex]

[tex]V = x*x*y[/tex]

[tex]V = x^2*y[/tex]

Make y the subject

[tex]y = \frac{V}{x^2}[/tex]

Substitute 3 for V

[tex]y = \frac{3}{x^2}[/tex]

The surface area of the open box is:

[tex]SA = x^2 + 2xy+2xy[/tex]

[tex]SA = x^2 + 4xy[/tex]

Substitute: [tex]y = \frac{3}{x^2}[/tex]

[tex]SA = x^2 + 4x*\frac{3}{x^2}[/tex]

[tex]SA = x^2 + 4*\frac{3}{x}[/tex]

[tex]SA = x^2 + \frac{12}{x}[/tex]

Hence, the function is:

[tex]SA(x) = x^2 + \frac{12}{x}[/tex]

ACCESS MORE