Answer:
[tex]SA(x) = x^2 + \frac{12}{x}[/tex]
Step-by-step explanation:
Given
[tex]V = 3m^3[/tex] --- volume
[tex]x \to base\ length[/tex]
[tex]y \to height[/tex]
Required
The surface area as a function of base length
The volume (V) is calculated as:
[tex]V = Base\ Area * Height[/tex]
[tex]V = x*x*y[/tex]
[tex]V = x^2*y[/tex]
Make y the subject
[tex]y = \frac{V}{x^2}[/tex]
Substitute 3 for V
[tex]y = \frac{3}{x^2}[/tex]
The surface area of the open box is:
[tex]SA = x^2 + 2xy+2xy[/tex]
[tex]SA = x^2 + 4xy[/tex]
Substitute: [tex]y = \frac{3}{x^2}[/tex]
[tex]SA = x^2 + 4x*\frac{3}{x^2}[/tex]
[tex]SA = x^2 + 4*\frac{3}{x}[/tex]
[tex]SA = x^2 + \frac{12}{x}[/tex]
Hence, the function is:
[tex]SA(x) = x^2 + \frac{12}{x}[/tex]