Answer:
[tex]y=-\frac{3}{4}x-\frac{9}{2}[/tex]
Step-by-step explanation:
Hi there!
What we need to know:
1) Determine the slope (m)
[tex]3x + 4y = 1[/tex]
Rearrange the given equation into slope-intercept form (this will help us determine m)
Subtract 3x from both sides to isolate 4y
[tex]3x + 4y-3x = -3x+1\\4y= -3x+1[/tex]
Divide both sides by 4 to isolate y
[tex]y= -\frac{3}{4} x+\frac{1}{4}[/tex]
Now, we can identify that [tex]-\frac{3}{4}[/tex] is the slope of the line. Parallel lines have the same slope, so this would also be the slope of the line we're solving for. Plug this into [tex]y=mx+b[/tex]:
[tex]y=-\frac{3}{4}x+b[/tex]
2) Determine the y-intercept (b)
[tex]y=-\frac{3}{4}x+b[/tex]
Plug in the given point (10,-12) and solve for b
[tex]-12=-\frac{3}{4}(10)+b\\-12=-\frac{3}{2}(5)+b\\-12=-\frac{15}{2}+b[/tex]
Add [tex]\frac{15}{2}[/tex] to both sides to isolate b
[tex]-12+\frac{15}{2}=-\frac{15}{2}+b+\frac{15}{2}\\-12+\frac{15}{2}=b\\-\frac{9}{2} =b[/tex]
Therefore, the y-intercept is [tex]-\frac{9}{2}[/tex]. Plug this back into [tex]y=-\frac{3}{4}x+b[/tex]:
[tex]y=-\frac{3}{4}x-\frac{9}{2}[/tex]
I hope this helps!