The demand function for a certain commodity is given by , where p is the price per unit and q is the number of units. a. At what price per unit will the quantity b. If the price is $1.87 per unit, demanded equal 8 units

Respuesta :

Answer:

(a) The price per unit is $1.83 when the quantity demanded is 8 units

(b) The quantity demanded is approximately 8 units when the price per unit is $1.87

Explanation:

Given

[tex]p = 100e^{-q/2}[/tex]

[tex]p \to[/tex] price per unit

[tex]q \to[/tex] quantity demanded

Solving (a): Price per unit when quantity is 8

This means that we calculate p(8)

We have:

[tex]p(q) = 100e^{-q/2}[/tex]

So:

[tex]p(8) = 100e^{-8/2}[/tex]

[tex]p(8) = 100e^{-4}[/tex]

[tex]p(8) = 1.83[/tex]

Solving (b): Quantity demanded when price per unit is $1.87

This means that:

[tex]p(q) = 1.87[/tex] ---- find q

We have:

[tex]p(q) = 100e^{-q/2}[/tex]

So:

[tex]1.87 = 100e^{-q/2}[/tex]

Divide both sides by 100

[tex]0.0187 = e^{-q/2}[/tex]

Take natural logarithm of both sides

[tex]\ln(0.0187) = \ln(e^{-q/2})[/tex]

[tex]-3.980 = \ln(e^{-q/2})[/tex]

Rewrite as:

[tex]-3.980 = -q/2}*\ln(e)[/tex]

[tex]-3.980 = -q/2[/tex]

Multiply by -2

[tex]7.96 = q[/tex]

[tex]q = 7.96[/tex]

Approximate

[tex]q = 8[/tex]

ACCESS MORE