Answer:
[tex]SE_{\bar x} = 0.311[/tex]
Step-by-step explanation:
Given
[tex]n=5[/tex]
[tex]\bar x = 41\%[/tex]
[tex]\sigma^2= 48.5\%[/tex] --- variance
Required
The standard error of the sample mean
This is calculated as:
[tex]SE_{\bar x} = \frac{\sigma}{\sqrt n}[/tex]
This can be rewritten as:
[tex]SE_{\bar x} = \frac{\sqrt{\sigma^2}}{\sqrt n}[/tex]
So, we have:
[tex]SE_{\bar x} = \frac{\sqrt{48.5\%}}{\sqrt 5}[/tex]
Rewrite as:
[tex]SE_{\bar x} = \sqrt{\frac{48.5\%}{5}}[/tex]
[tex]SE_{\bar x} = \sqrt{0.097}[/tex]
[tex]SE_{\bar x} = 0.311[/tex]