Answer:
The speed of the object at the lowest point in its trajectory is:
[tex]v=2.34\: m/s[/tex]
Explanation:
We can use the conservation of energy between the maximum point of swing and the lowest point of the pendulum.
[tex]P=K[/tex]
[tex]mgh=\frac{1}{2}mv^{2}[/tex] (1)
Where:
We can find h using trigonometry.
[tex]h=L-Lcos(30)=L(1-cos(30))[/tex]
[tex]h=2.1(1-cos(30))=0.28\: m[/tex]
Now, using equation (1) we can find v.
[tex]gh=\frac{1}{2}v^{2}[/tex]
[tex]2gh=v^{2}[/tex]
[tex]v=\sqrt{2gh}[/tex]
[tex]v=\sqrt{2(9.81)(0.28)}[/tex]
[tex]v=2.34\: m/s[/tex]
I hope it helps you!