A 1-m3 tank holds a two-phase liquid-vapor mixture of carbon dioxide at – 17 °C. The quality of the mixture is 70%. For saturated carbon dioxide at – 17 °C, vf = 0.9827×10-3 m3/kg and vg =1.756×10-2 m3/kg. Determine the masses of saturated liquid and saturated vapor, each in kg. What is the percent of the total volume occupied by saturated liquid?

Respuesta :

Answer:

a)  [tex]m_v= 56.16 Kg[/tex]

    [tex]m_l= 14.04 Kg[/tex]

b)  [tex]\mu=1.37\%[/tex]

Explanation:

From the question we are told that:

Volume of tank [tex]V_t=1m^3[/tex]

Temperature of [tex]CO_2=-17^oC[/tex]

Quality of the mixture [tex]Q= 70%[/tex]

Specific Volume constants at [tex]-17^oC:[/tex]

 [tex]v_f = 0.9827*10^{-3} m3/kg[/tex]

 [tex]v_g =1.756*10^{-2} m3/kg.[/tex]

Generally the equation for Specific Volume is mathematically given by

 [tex]v = v_f + x (v_g -v_f)[/tex]

 [tex]v= (0.9827 * 10^{-3} ) + 0.8 * (17.56 * 10^{-3} -0.9827 * 10^{-3})[/tex]

 [tex]v= 0.014244 m3/Kg[/tex]

Generally the equation for Mass is mathematically given by

 [tex]m=\frac{v'}{v}[/tex]

 [tex]m=\frac{1}{0.014244}[/tex]

 [tex]m=70.20 Kg[/tex]

Generally the Mass of saturated Vapor is mathematically given by

 [tex]m_v=0.8 * (70.202)[/tex]

 [tex]m_v= 56.16 Kg[/tex]

Generally the Mass of saturated Liquid is mathematically given by

 [tex]m_l = (70.20 Kg)-(56.16 Kg)[/tex]

 [tex]m_l= 14.04 Kg[/tex]

b)

Generally the equation for Volume is mathematically given by

 [tex]v_l = m_l x v_f[/tex]

 [tex]v_l= (14.04 Kg) (0.9827 x 10{-3} m3/kg)[/tex]

 [tex]v_l= 0.01379 m^3[/tex]

Therefore Percentage of liquid

 [tex]\mu = \frac{v_l}{v} * 100 \%[/tex]

 [tex]\mu= [(0.01379 m^3)/(1 m^3)] *100 \%[/tex]

 [tex]\mu=1.37\%[/tex]

ACCESS MORE