Answer:
The magnitude of the force acting on the sled is 60.5 newtons.
Explanation:
The Work-Energy Theorem states that the work done by the external force applied on the sled ([tex]W[/tex]), in joules, is equal to the change of its translational kinetic energy ([tex]\Delta K[/tex]), in joules:
[tex]W = \Delta K[/tex] (1)
By definitions of work and translational kinetic energy we expand the equation above:
[tex]F\cdot s = \frac{1}{2}\cdot m\cdot (v_{2}^{2}-v_{1}^{2})[/tex] (1b)
Where:
[tex]F[/tex] - External force applied on the sled, in newtons.
[tex]s[/tex] - Travelled distance, in meters.
[tex]v_{1}, v_{2}[/tex] - Initial and final velocities, in meters per second.
If we know that [tex]m = 11\,kg[/tex], [tex]v_{1} = 4\,\frac{m}{s}[/tex], [tex]v_{2} = 7\,\frac{m}{s}[/tex] and [tex]s = 3\,m[/tex], then the external force applied on the sled is:
[tex]F = \frac{m\cdot (v_{2}^{2}-v_{1}^{2})}{2\cdot s}[/tex]
[tex]F = \frac{(11\,kg)\cdot \left[\left(7\,\frac{m}{s} \right)^{2}-\left(4\,\frac{m}{s} \right)^{2}\right]}{2\cdot (3\,m)}[/tex]
[tex]F = 60.5\,N[/tex]
The magnitude of the force acting on the sled is 60.5 newtons.