Respuesta :

Answer:

[tex]a) x = k \times \frac{1}{y^2} \ , \ where \ k \ is \ a \ constant\\\\b) x = 3, \ when\ y\ =\ 10\\\\c) y = 10, \ when \ x = 3[/tex]

Step-by-step explanation:

a)

[tex]x \ \alpha \ \frac{1}{y^2}\\\\x = k \times \frac{1}{y^2}\\\\[/tex]                [tex][ \ where \ k \ is \ a \ constant \ ][/tex]

Find k.

Given x = 12, y = 5,

[tex]12 = k \times \frac{1}{5^2}\\\\k = 12 \times 25 = 300[/tex]

b)

Find x.

Given y = 10

We have k = 300

[tex]x = k \times \frac{1}{y^2}\\x = 300 \times \frac{1}{10^2} \\\\x= \frac{300}{100} = 3[/tex]

c)

Find y

Given x = 3

We have k = 300

[tex]x = k \times \frac{1}{y^2}\\\\3 = 300 \times \frac{1}{y^2}\\\\\frac{1}{y^2} = \frac{3}{300}\\\\\frac{1}{y^2} = \frac{1}{100}\\\\y^2 = 100\\\\y = \sqrt{100} = 10[/tex]