Answer:
Z = 138.5 Ω
Explanation:
In a series RLC circuit the impedance is
Z = [tex]\sqrt{R^2 + ( X_L - X_C)^2 }[/tex]
the capacitive impedance is
X_C = 1 / wC
the inductive impedance is
X_L = wL
in this exercise indicate that C = 50 10⁻³ F, L = 0.3 H and the frequency is f=60 Hz
angular velocity and frequency are related
w = 2π f
w = 2π 60
w = 376.99 rad / s
let's calculate
Z = [tex]\sqrt{80^2 + ( 376.99 \ 0.3 - \frac{1}{376.99 \ 50 \ 10^{-3}} )^2 }[/tex]
Z = [tex]\sqrt{6400 + ( 113.1 - 0.053)^2}[/tex]
Z = √19179.6
Z = 138.5 Ω