Given:
The image of a lens crosses the x-axis at –2 and 3.
The point (–1, 2) is also on the parabola.
To find:
The equation that can be used to model the image of the lens.
Solution:
If the graph of polynomial intersect the x-axis at c, then (x-c) is a factor of the polynomial.
It is given that the image of a lens crosses the x-axis at –2 and 3. It means (x+2) and (x-3) are factors of the function.
So, the equation of the parabola is:
[tex]y=k(x+2)(x-3)[/tex] ...(i)
Where, k is a constant.
It is given that the point (–1, 2) is also on the parabola. It means the equation of the parabola must be satisfy by the point (-1,2).
Putting [tex]x=-1, y=2[/tex] in (i), we get
[tex]2=k(-1+2)(-1-3)[/tex]
[tex]2=k(1)(-4)[/tex]
[tex]2=-4k[/tex]
Divide both sides by -4.
[tex]\dfrac{2}{-4}=k[/tex]
[tex]-\dfrac{1}{2}=k[/tex]
Putting [tex]k=-\dfrac{1}{2}[/tex] in (i), we get
[tex]y=-\dfrac{1}{2}(x+2)(x-3)[/tex]
Therefore, the required equation of the parabola is [tex]y=-\dfrac{1}{2}(x+2)(x-3)[/tex].
Note: All options are incorrect.