The image of a parabolic lens is projected onto a graph. The image crosses the x-axis at –2 and 3. The point (–1, 2) is also on the parabola. Which equation can be used to model the image of the lens?

y = (x – 2)(x + 3)
y = (x – 2)(x + 3)
y = (x + 2)(x – 3)
y = (x + 2)(x – 3)

Respuesta :

Answer:

[tex]y =-\frac{1}{2}(x +2)(x - 3)[/tex]

Step-by-step explanation:

Given

[tex]x_1 = -2[/tex]

[tex]x_2 = 3[/tex]

[tex](x,y) = (-1,2)[/tex] --- a point on the parabola

Required

The equation

First, calculate the equation from the zeros

[tex]y =k(x - x_1)(x - x_2)[/tex]

Substitute [tex]x_1 = -2[/tex] and [tex]x_2 = 3[/tex]

[tex]y =k(x - -2)(x - 3)[/tex]

[tex]y =k(x +2)(x - 3)[/tex]

To solve for k, we substitute [tex](x,y) = (-1,2)[/tex]

[tex]2 = k(-1+2)(-1-3)[/tex]

[tex]2 = k(1)(-4)[/tex]

[tex]2 = -4k[/tex]

Divide by -4

[tex]k=\frac{2}{-4}[/tex]

[tex]k=-\frac{1}{2}[/tex]

So, the equation is:

[tex]y =k(x +2)(x - 3)[/tex]

[tex]y =-\frac{1}{2}(x +2)(x - 3)[/tex]

ACCESS MORE