Respuesta :

Answer:

using pythagoras theorem

hyp 2=opp 2+adj 2

=( √6)(√6)+(√7)(√7)

hyp 2=13

hyp=√13

Given:

A right angle triangle with legs [tex]\sqrt{6}[/tex] cm and [tex]\sqrt{7}[/tex] cm. The length of the hypotenuse is x.

To find:

The value of x.

Solution:

Pythagoras theorem: In a right angle triangle,

[tex]Hypotenuse^2=Base^2+Perpendicular^2[/tex]

Using the Pythagoras theorem, we get

[tex]x^2=(\sqrt{7})^2+(\sqrt{6})^2[/tex]

[tex]x^2=7+6[/tex]

[tex]x^2=13[/tex]

Taking square root on both sides, we get

[tex]x=\sqrt{13}[/tex]                  [Because side length is always positive]

The measure of hypotenuse is [tex]\sqrt{13}[/tex] cm.

Therefore, the correct option is B.

ACCESS MORE