Answer:
The shorter leg is five feet, the longer leg is 12 feet, and the hypotenuse is 13 feet.
Step-by-step explanation:
Let the shorter leg be x.
Since the longer leg is seven feet longer than the shorter leg, the length of the longer leg can be modeled by (x + 7).
Since the triangle is a right triangle, we can use the Pythagorean Theorem, given by:
[tex]a^2+b^2=c^2[/tex]
Where a and b are the side lengths and c is the hypotenuse.
The hypotenuse is 13 and the legs are x and (x + 7). Substitute:
[tex](x)^2+(x+7)^2=(13)^2[/tex]
Square:
[tex]x^2+x^2+14x+49=169[/tex]
Simplify:
[tex]2x^2+14x-120=0[/tex]
We can divide both sides by two:
[tex]x^2+7x-60=0[/tex]
Factor:
[tex](x-5)(x+12)=0[/tex]
Zero Product Property:
[tex]x-5=0\text{ or }x+12=0[/tex]
Solve for each case:
[tex]x=5\text{ or } x=-12[/tex]
Since lengths cannot be negative, we can ignore the negative answer. So, our only solution is:
[tex]x=5[/tex]
The shorter leg is five feet, the longer leg will be (5 + 7) or 12 feet. And the hypotenuse is 13 feet as given.