Answer:
Magnitude = 15.86 units
direction = 69 degree below negative X axis
Explanation:
A = 20 units at 60.0° counterclockwise from the negative x - axis
B = 40 units at 30.0° counterclockwise from the positive x - axis
C = 35 units at 60.0° clockwise from the negative y - axis
Write the vectors in the vector form
[tex]\overrightarrow{A} =20 (- cos 60 \widehat{i} - sin 60 \widehat{j})=- 10\widehat{i} - 17.3 \widehat{j}\\\\\overrightarrow{B} =40 (cos 30 \widehat{i} + sin 30 \widehat{j})= 34.6\widehat{i} +20 \widehat{j}\\\\\overrightarrow{C} =35 (- sin 60 \widehat{i} - cos 60 \widehat{j})=- 30.3\widehat{i} - 17.5 \widehat{j}\\\\Now\\\\overrightarrow{A} + \overrightarrow{B} + \overrightarrow{C} = (- 10 + 34.6 - 30.3) \widehat{i} + (-17.3 + 20-17.5)\widehat{j}\\\\[/tex]
[tex]\\\overrightarrow{A} + \overrightarrow{B} + \overrightarrow{C} = - 5.7\widehat{i} -14.8\widehat{j}[/tex]
The magnitude is given by
[tex]= \sqrt{5.7^2 + 14.8^2} = 15.86 units[/tex]
The direction is given by
[tex]tan\theta = \frac{- 14.8}{- 5.7}\\\\\theta= 69^o[/tex]
below negative X axis.