Given:
Principal = Rs. 1200
Rate of interest = 25%
To find:
The time in which the interest will became equal to the principal.
Solution:
We have,
[tex]P=1200[/tex]
[tex]r=\dfrac{25}{100}[/tex]
[tex]r=0.25[/tex]
If interest is equal to the principal, then
[tex]Amount=Principal+Interest[/tex]
[tex]Amount=1200+1200[/tex]
[tex]Amount=2400[/tex]
The formula for amount is:
[tex]A=P\left(1+r)^n[/tex]
Substituting [tex]A=2400, P=1200, r=0.25[/tex] in the above formula, we get
[tex]2400=1200(1+0.25)^n[/tex]
[tex]\dfrac{2400}{1200}=(1.25)^n[/tex]
[tex]2=(1.25)^n[/tex]
Taking log on both sides, we get
[tex]\log2=\log(1.25)^n[/tex]
[tex]\log2=n\log(1.25)[/tex] [tex][\because \log a^b=b\log a][/tex]
[tex]\dfrac{\log2}{\log(1.25)}=n[/tex]
[tex]n\approx 3.11[/tex]
Therefore, the interest will became equal to the principal in about 3.11 years.