Respuesta :

Answer:

See explanation

Step-by-step explanation:

The question has conflicting details

[tex]f(x) = 2x + 5[/tex]

[tex]f(x) = 2x + 5[/tex] and three halves doesn't sound correct.

So, I will take f(x) as

[tex]f(x) = 2x + 5[/tex]

Next, solve for the inverse function

Replace f(x) with y

[tex]y = 2x + 5[/tex]

Swap x and y

[tex]x = 2y + 5[/tex]

Make 2y the subject

[tex]2y = x-5[/tex]

Make y the subject

[tex]y = \frac{x-5}{2}[/tex]

Replace y with the inverse sign

[tex]f^{-1}(x) = \frac{x-5}{2}[/tex]

So, now we can calculate any value from the original function and from the inverse function.

For instance:

[tex]f^{-1}(7) = \frac{7-5}{2} = \frac{2}{2} = 1[/tex]

[tex]f(1) = 2*1 + 5 = 2+5=7[/tex]