Respuesta :
Answer:
z ( max) = 2000 $
x₁ = 500 x₂ = 0 x₃ = 0
Step-by-step explanation:
cutting sewing finishing Profit $
Jean1 (x₁ ) 8 12 4 4
Jean2 (x₂ ) 12 18 8 4.5
Jean3 (x₃ ) 18 24 12 6
Time available 5200 6000 2200
b) Formulation of a linear programming problem:
Objective Function z
z = 4*x₁ + 4.5*x₂ + 6*x₃ to maximize
Constrains:
Constrain 1
Available cutting time 5200 minutes
8*x₁ + 12*x₂ + 18*x₃ ≤ 5200
Constrain 2:
Available sewing time 6000 minutes
12*x₁ + 18*x₂ + 24*x₃ ≤ 6000
Constrain 3:
Available finishing time 2200 minutes
4*x₁ + 8*x₂ + 12*x₃ ≤ 2200
General constraints:
x₁ ≥ 0 x₂ ≥ 0 x₃ ≥ 0 all integers
After 6 iterations the optimal solution is:
z ( max) = 2000 $
x₁ = 500 x₂ = 0 x₃ = 0
We can see in the model that times required to make jean 2 and jean 3
are much bigger than jean 1 and but the price of jean 2 is only 0.5 $ above the price of jean 1 and jean 3 is only 2 $.