Answer:
(a) Linear model
[tex]max\ P = 9x + 7y[/tex]
Subject to:
[tex]12x + 4y \le 60[/tex]
[tex]4x + 8y \le 40[/tex]
[tex]x,y \ge 0[/tex]
(b) Standard form:
[tex]max\ P = 9x + 7y[/tex]
Subject to:
[tex]12x + 4y + s_1 = 60[/tex]
[tex]4x + 8y +s_2= 40[/tex]
[tex]x,y \ge 0[/tex]
[tex]s_1,s_2 \ge 0[/tex]
Explanation:
Given
[tex]\begin{array}{ccc}{} & {Hours/} & {Unit} & {Product} & {Line\ 1} & {Line\ 2} & {A} & {12} & {4} & {B} & {4} & {8} & {Total\ Hours} & {60} &{40}\ \end{array}[/tex]
Solving (a): Formulate a linear programming model
From the question, we understand that:
A has a profit of $9 while B has $7
So, the linear model is:
[tex]max\ P = 9x + 7y[/tex]
Subject to:
[tex]12x + 4y \le 60[/tex]
[tex]4x + 8y \le 40[/tex]
[tex]x,y \ge 0[/tex]
Where:
[tex]x \to line\ 1[/tex]
[tex]y \to line\ 2[/tex]
Solving (b): The model in standard form:
To do this, we introduce surplus and slack variable "s"
For [tex]\le[/tex] inequalities, we add surplus (add s)
Otherwise, we remove slack (minus s)
So, the standard form is:
So, the linear model is:
[tex]max\ P = 9x + 7y[/tex]
Subject to:
[tex]12x + 4y + s_1 = 60[/tex]
[tex]4x + 8y +s_2= 40[/tex]
[tex]x,y \ge 0[/tex]
[tex]s_1,s_2 \ge 0[/tex]