Respuesta :
Answer:
[tex]\displaystyle y-9=\frac{1}{2}(x-8)\text{ or } y-4=\frac{1}{2}(x+2)[/tex]
Step-by-step explanation:
Point-slope form is given by:
[tex]\displaystyle y-y_1=m(x-x_1)[/tex]
Where (x₁, y₁) is a point and m is the slope.
So, first, we will find the slope using the two points (8, 9) and (-2, 4). We can use the slope formula:
[tex]\displaystyle m=\frac{\Delta y}{\Delta x}=\frac{4-9}{-2-8}=\frac{-5}{-10}=\frac{1}{2}[/tex]
Next, pick either of the two points and substitute it into the point-slope formula. Using (8, 9), we acquire:
[tex]\displaystyle y-9=\frac{1}{2}\left(x-8\right)[/tex]
And using (-2, 4), we acquire:
[tex]\displaystyle y-4=\frac{1}{2}\left(x -(-2)\right)\Rightarrow y-4=\frac{1}{2}\left(x+2\right)[/tex]
Both of these are valid answers.
Answer:
y-9=1/2(x-8)
Step-by-step explanation:
m=(y2-y1)/(x2-x1)
m=(4-9)/(-2-8)
m=-5/-10
m=1/2
y-y1=m(x-x1)
y-9=1/2(x-8)