Michelle throws a frisbee into the air. The height of the frisbee at a given time can be modeled by the equation h(t)= -2t

Respuesta :

Answer:

(a) The ball will hit the ground after 3 seconds

(b) The maximum height is 6.125

Step-by-step explanation:

Given

[tex]h(t) = -2t^2 +5t +3[/tex]

Solving (a): When the frisbee will hit the ground?

To do this, we set h(t) to 0

So, we have:

[tex]h(t) = -2t^2 +5t +3[/tex]

[tex]-2t^2 +5t +3=0[/tex]

Expand

[tex]-2t^2 +6t-t +3=0[/tex]

Factorize

[tex]-2t(t - 3) -1(t - 3) = 0[/tex]

Factor out t - 3

[tex](-2t -1)(t - 3) = 0[/tex]

Split:

[tex]-2t -1= 0\ or\ t - 3 = 0[/tex]

Solve for t in both equations

[tex]-2t =1\ or\ t = 3[/tex]

[tex]t =-\frac{1}{2}\ or\ t = 3[/tex]

Time can't be negative; So:

[tex]t = 3[/tex]

Solving (b): How height the frisbee will go?

First, we calculate time to reach the maximum height

[tex]t = -\frac{b}{2a}[/tex]

Where:

[tex]h(t) = at^2 + bt + c[/tex]

By comparison:

[tex]a = -2,\ b =5,\ c =3[/tex]

So:

[tex]t = -\frac{b}{2a}[/tex]

[tex]t = -\frac{5}{2*-2}[/tex]

[tex]t = \frac{5}{4}[/tex]

[tex]t = 1.25[/tex]

So, the maximum height is:

[tex]h_{max} = -2 * 1.25^2 + 5 * 1.25 + 3[/tex]

[tex]h_{max} = 6.125[/tex]

ACCESS MORE