The arch of a bridge forms the upper half of an ellipse. The arch is 6 meters above the 20-meter-wide river. Write an equation for the ellipse in which its major axis coincides with the water level.

Respuesta :

Answer:

[tex]\frac{x^2}{36} + \frac{y^2}{100} = 1[/tex]

Step-by-step explanation:

Required

The equation of the ellipse

This is calculated as:

[tex]\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1[/tex]

Where:

[tex]b =6[/tex] ---- height

[tex]a = 0.5 * 20 =10[/tex] --- width

So:

[tex]\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1[/tex]

[tex]\frac{x^2}{6^2} + \frac{y^2}{10^2} = 1[/tex]

[tex]\frac{x^2}{36} + \frac{y^2}{100} = 1[/tex]

ACCESS MORE