Answer:
[tex](x^3 + 3x^2 - x + 2)(x^2 + 6x -2) = x^5 + 9x^4+ 15x^3 + 2x^2 + 10x -4[/tex]
Step-by-step explanation:
Given
[tex](x^3 + 3x^2 - x + 2)(x^2 + 6x -2)[/tex]
Required
The equivalent expression
We have:
[tex](x^3 + 3x^2 - x + 2)(x^2 + 6x -2)[/tex]
Open bracket
[tex](x^3 + 3x^2 - x + 2)(x^2 + 6x -2) = x^5 + 6x^4 - 2x^3 + 3x^4 + 18x^3 - 6x^2 -x^3 + 6x^2 - 2x + 2x^2 + 12x -4[/tex]
Collect like terms
[tex](x^3 + 3x^2 - x + 2)(x^2 + 6x -2) = x^5 + 6x^4 + 3x^4- 2x^3 -x^3 + 18x^3 - 6x^2 + 6x^2 + 2x^2- 2x + 12x -4[/tex]
Evaluate like terms
[tex](x^3 + 3x^2 - x + 2)(x^2 + 6x -2) = x^5 + 9x^4+ 15x^3 + 2x^2 + 10x -4[/tex]