A box has three balls, one white and two red. We select one ball, put it back in the box, and select a second ball (sampling with replacement). Find the probability of the following events:

a. Let F= the event of getting the white ball twice.
b. Let G= the event of getting two balls of different colors.
c. Let H= the event of getting white on the first pick.
d. Are F and G mutually exclusive?
e. Are G and H mutually exclusive?

Respuesta :

Answer:

See explaation

Step-by-step explanation:

Given

Represent the balls with the first letters

[tex]W =1[/tex]

[tex]R =2[/tex]

Solving (a): P(F) --- White balls twice

The event of F is:

[tex]F = \{(W,W)\}[/tex]

So:

[tex]P(F) = P(W) * P(W)[/tex]

[tex]P(F) = \frac{n(W)}{n} * \frac{n(W)}{n}[/tex]

[tex]P(F) = \frac{1}{3} * \frac{1}{3}[/tex]

[tex]P(F) = \frac{1}{9}[/tex]

Solving (b): P(G) --- two different colors

The event of G is:

[tex]G = \{(W,R),(R,W)\}[/tex]

So:

[tex]P(G) = P(W) * P(R) + P(R) * P(W)[/tex]

[tex]P(G) = \frac{n(W)}{n} * \frac{n(R)}{n} + \frac{n(R)}{n} * \frac{n(W)}{n}[/tex]

[tex]P(G) = \frac{1}{3} * \frac{2}{3} + \frac{2}{3} * \frac{1}{3}[/tex]

[tex]P(G) = \frac{2}{9} + \frac{2}{9}[/tex]

[tex]P(G) = \frac{4}{9}[/tex]

Solving (c): P(H) --- White picked first

The event of H is:

[tex]H = \{(W,R),(W,W)\}[/tex]

So:

[tex]P(H) = P(W) * P(R) + P(W) * P(W)[/tex]

[tex]P(H) = \frac{n(W)}{n} * \frac{n(R)}{n} + \frac{n(W)}{n} * \frac{n(W)}{n}[/tex]

[tex]P(H) = \frac{1}{3} * \frac{2}{3} + \frac{1}{3} * \frac{1}{3}[/tex]

[tex]P(H) = \frac{2}{9} + \frac{1}{9}[/tex]

[tex]P(H) = \frac{3}{9}[/tex]

[tex]P(H) = \frac{1}{3}[/tex]

Solving (d): F and G, mutually exclusive?

We have:

[tex]F = \{(W,W)\}[/tex]

[tex]G = \{(W,R),(R,W)\}[/tex]

Check for common elements

[tex]n(F\ n\ G) = 0[/tex]

Hence, F and G are mutually exclusive

Solving (e): G and G, mutually exclusive?

We have:

[tex]G = \{(W,R),(R,W)\}[/tex]

[tex]H = \{(W,R),(W,W)\}[/tex]

Check for common elements

[tex]n(G\ n\ H) = 1[/tex]

Hence, F and G are not mutually exclusive