Respuesta :
Answer:
See explaation
Step-by-step explanation:
Given
Represent the balls with the first letters
[tex]W =1[/tex]
[tex]R =2[/tex]
Solving (a): P(F) --- White balls twice
The event of F is:
[tex]F = \{(W,W)\}[/tex]
So:
[tex]P(F) = P(W) * P(W)[/tex]
[tex]P(F) = \frac{n(W)}{n} * \frac{n(W)}{n}[/tex]
[tex]P(F) = \frac{1}{3} * \frac{1}{3}[/tex]
[tex]P(F) = \frac{1}{9}[/tex]
Solving (b): P(G) --- two different colors
The event of G is:
[tex]G = \{(W,R),(R,W)\}[/tex]
So:
[tex]P(G) = P(W) * P(R) + P(R) * P(W)[/tex]
[tex]P(G) = \frac{n(W)}{n} * \frac{n(R)}{n} + \frac{n(R)}{n} * \frac{n(W)}{n}[/tex]
[tex]P(G) = \frac{1}{3} * \frac{2}{3} + \frac{2}{3} * \frac{1}{3}[/tex]
[tex]P(G) = \frac{2}{9} + \frac{2}{9}[/tex]
[tex]P(G) = \frac{4}{9}[/tex]
Solving (c): P(H) --- White picked first
The event of H is:
[tex]H = \{(W,R),(W,W)\}[/tex]
So:
[tex]P(H) = P(W) * P(R) + P(W) * P(W)[/tex]
[tex]P(H) = \frac{n(W)}{n} * \frac{n(R)}{n} + \frac{n(W)}{n} * \frac{n(W)}{n}[/tex]
[tex]P(H) = \frac{1}{3} * \frac{2}{3} + \frac{1}{3} * \frac{1}{3}[/tex]
[tex]P(H) = \frac{2}{9} + \frac{1}{9}[/tex]
[tex]P(H) = \frac{3}{9}[/tex]
[tex]P(H) = \frac{1}{3}[/tex]
Solving (d): F and G, mutually exclusive?
We have:
[tex]F = \{(W,W)\}[/tex]
[tex]G = \{(W,R),(R,W)\}[/tex]
Check for common elements
[tex]n(F\ n\ G) = 0[/tex]
Hence, F and G are mutually exclusive
Solving (e): G and G, mutually exclusive?
We have:
[tex]G = \{(W,R),(R,W)\}[/tex]
[tex]H = \{(W,R),(W,W)\}[/tex]
Check for common elements
[tex]n(G\ n\ H) = 1[/tex]
Hence, F and G are not mutually exclusive