Answer:
[tex]P(E|A)= \frac{10}{11}[/tex]
Step-by-step explanation:
Given
Two rolls of die
[tex]E \to[/tex] one of the outcomes is 6
[tex]A \to[/tex] atleast one is 6
Required
P(E|A)
First, list out the outcome of each
[tex]E = \{(1,6),(2,6),(3,6),(4,6),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5)\}[/tex]
[tex]A = \{(1,6),(2,6),(3,6),(4,6),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)\}[/tex]
So:
[tex]P(E|A)= \frac{n(E\ n\ A)}{n(A)}[/tex]
Where:
[tex]E\ n\ A = \{(1,6),(2,6),(3,6),(4,6),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5)\}[/tex]
[tex]n(E\ n\ A) = 10[/tex]
[tex]n(A) = 11[/tex]
So:
[tex]P(E|A)= \frac{10}{11}[/tex]