In ΔPQR,
P
R

PR
is extended through point R to point S,
m

Q
R
S
=
(
7
x
+
8
)

m∠QRS=(7x+8)

,
m

R
P
Q
=
(
x
+
12
)

m∠RPQ=(x+12)

, and
m

P
Q
R
=
(
3
x
+
20
)

m∠PQR=(3x+20)

. Find
m

R
P
Q
.
m∠RPQ

In ΔPQR P R PR is extended through point R to point S m Q R S 7 x 8 mQRS7x8 m R P Q x 12 mRPQx12 and m P Q R 3 x 20 mPQR3x20 Find m R P Q mRPQ class=

Respuesta :

9514 1404 393

Answer:

  m∠RPQ = 20°

Step-by-step explanation:

Exterior angle QRS is equal to the sum of interior angles RPQ and PQR.

  7x +8 = (x +12) +(3x +20)

  3x = 24 . . . . . . . . . . . . . . . . . . subtract 4x+8

  x = 8

  m∠RPQ = (x+12)° = (8+12)°

  m∠RPQ = 20°

ACCESS MORE