Respuesta :

Answer:

[tex] \large{ \tt{❃ \: EXPLANATION}} : [/tex]

  • We're provide - Sin θ = [tex] \frac{12}{37} [/tex] which means 12 is the perpendicular & 37 is the hypotenuse [ Since Sin θ = [tex] \tt{ \frac{p}{h}} [/tex] ] . We're asked to find out tan θ ].

[tex] \large{ \tt{❁ \: USING \: PYTHAGORAS \: THEOREM}} : [/tex]

[tex] \large{ \tt{❊ \: {h}^{2} = {p}^{2} + {b}^{2} }}[/tex]

[tex] \large{ \tt{⇢ {p}^{2} + {b}^{2} = {h}^{2} }}[/tex]

[tex] \large{ \tt{⇢ \: {b}^{2} = {h}^{2} - {p}^{2} }}[/tex]

[tex] \large{ \tt{⇢ \: {b}^{2} = {37}^{2} - {12}^{2} }}[/tex]

[tex] \large{ \tt{⇢ \: {b}^{2} = 1369 - 144}}[/tex]

[tex] \large{ \tt{ ⇢{b}^{2} = 1225}}[/tex]

[tex] \large{ \tt{⇢ \: b = \sqrt{1225}}} [/tex]

[tex] \large{ \tt{⇢ \: b = 35 \: \text {units}}}[/tex]

  • Now , We know - Tan θ= [tex] \tt{ \frac{perpendicular}{base} }[/tex]. Just plug the values :

[tex] \large{ \tt{➝ \: Tan \: \theta = \frac{p}{b} = \boxed{ \tt{ \frac{12}{35} }}}}[/tex]

▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁

ACCESS MORE