Respuesta :
Answer:
[tex]\frac{19}{7}[/tex]x+[tex]\frac{11}{7}[/tex]y+5=0
Step-by-step explanation:
the intersection of x-2y=0 and 3x+y+5 is ([tex]\frac{-10}{7}[/tex];[tex]\frac{-5}{7}[/tex])
=> the line : [tex]\frac{19}{7}[/tex]x+[tex]\frac{11}{7}[/tex]y+5=0
Answer:
[tex]Point \ of \ intersection = (\frac{-10}{7} , \frac{-5}{7})\\\\Equation \ of \ line : y = -\frac{19}{11}x - \frac{35}{11}[/tex]
Step-by-step explanation:
Find intersection of the given lines :
x - 2y = 0 => x = 2y ----------- ( 1 )
3x + y = - 5 -------------------- ( 2 )
Substitute ( 1 ) in ( 2 ) :
3x + y = - 5
3 ( 2y ) + y = - 5
6y + y = - 5
7y = - 5
[tex]y = -\frac{5}{7}[/tex]
Substitute y in ( 1 ) :
x = 2y
[tex]x = 2 \times \frac{-5}{7} = - \frac{10}{7}[/tex]
[tex]Therefore , \ point \ of \ intersection\ is ( -\frac{10}{7}, -\frac{5}{7} )[/tex]
To find the equation of the line passing through ( - 3, 2) and point of intersection :
Standard equation of a line : y = mx + b , where m is the slope, b is the y intercept.
So step 1 : Find slope , m:
[tex]slope, m = \frac{y_2 - y_1}{x_2 - x_1}[/tex] [tex][ \ where \ (x_1, y_ 1 ) = ( -3, 2 ) \ and \ (x_2, y_ 2 ) = ( \frac{-10}{7} , \frac{-5}{7}) \ ][/tex]
[tex]= \frac{\frac{-5}{7}-(2)}{\frac{-10}{7} - (-3)}\\\\= \frac{-5- 14}{-10 + 21}\\\\=\frac{-19}{11}\\\\=-\frac{19}{11}[/tex]
Step 2 : Equation of the line :
[tex](y - y _1) = m (x - x_1)\\[/tex]
[tex](y - 2 ) = -\frac{19}{11}(x -( -3))\\\\(y - 2 ) = -\frac{19}{11} (x+ 3)\\\\y = -\frac{19}{11} (x+ 3) + 2\\\\ y = -\frac{19}{11}x +(-\frac{19}{11} \times 3) + 2\\\\y= - \frac{19}[11}x +(\frac{-57}{11} + 2)\\\\y= - \frac{19}{11}x +(\frac{-57+ 22}{11})\\\\y= - \frac{19}{11}x +(\frac{-35}{11})\\\\[/tex]