The function A(b) relates the area of a trapezoid with a given height of 14 and one base length of 5 with the length of its other base. It takes as input the other base value, and returns as output the area of the trapezoid. A(b)=14xb+5/2 Which equation below represents the inverse function B(a), which takes the trapezoid's area as input and returns as output the length of the other base? A. B(a)+a/7+5 B. B(a)=a/5-7 C. B(a)=a/7-5 D. B(a)=a/5+7

Respuesta :

Answer:

[tex]b(a) =\frac{a}{7} -5[/tex]

Step-by-step explanation:

Given

[tex]A(b) = 14 * \frac{b + 5}{2}[/tex]

Required

Determine the inverse function b(a)

Write A(b) as a

[tex]a = 14 * \frac{b + 5}{2}[/tex]

Swap a and b

[tex]b = 14 * \frac{a + 5}{2}[/tex]

[tex]b = 7(a + 5)[/tex]

Divide both sides by 7

[tex]a + 5 = \frac{b}{7}[/tex]

Maka a the subject

[tex]a =\frac{b}{7} -5[/tex]

Swap a and b again

[tex]b =\frac{a}{7} -5[/tex]

Hence:

[tex]b(a) =\frac{a}{7} -5[/tex]

ACCESS MORE