In the expansion of (1/ax +2ax^2)^5 the coefficient of x is five. Find the value of the constant a.
![In the expansion of 1ax 2ax25 the coefficient of x is five Find the value of the constant a class=](https://us-static.z-dn.net/files/d68/3a1637effa7788c950d5666709779d59.jpg)
Answer:
80x⁴
Step-by-step explanation:
[tex](\frac{1}{ax} + 2ax^2)^5 = 5C_0(\frac{1}{ax})^5(2ax^2)^0 + 5C_1(\frac{1}{ax})^4(2ax^2)^1 + 5C_2(\frac{1}{ax})^3 (2ax^2)^2[/tex]
[tex]+ 5C_3 (\frac{1}{ax})^2(2ax^2)^3 + 5C_4(\frac{1}{ax})^1(2ax^2)^4 + 5C_5(\frac{1}{ax})^0(2ax^2)^5[/tex]
[tex]5C_0(\frac{1}{ax})^5(2ax^2)^0 =1 \times (\frac{1}{ax})^5 \times 1 = \frac{1}{a^5x^5}\\\\5C_1(\frac{1}{ax})^4(2ax^2)^1 = 5 \times (\frac{1}{ax})^4 \times (2ax^2)^1 = 10 ax^2 \times \frac{1}{a^4x^4} = \frac{10}{a^3x^2}\\\\5C_2 (\frac{1}{ax})^3 (2ax^2)^2= 10 \times (\frac{1}{ax})^3 \times (2ax^2)^2 = 10 \times \frac{1}{a^3x^3} \times 4a^2x^4 = \frac{40x}{a}\\\\5C_3 (\frac{1}{ax})^2 (2ax^2)^3 = 10 \times (\frac{1}{ax})^2 \times (2ax^2)^3 = 10 \times \frac{1}{a^2x^2} \times 8a^3 x^6 = 80ax^4\\\\[/tex]
[tex]5C_4(\frac{1}{ax})^1(2ax^2)^4 = 5 \times \frac{1}{ax} \times 16a^4x^8 = 80a^3x^7\\\\5C_5(\frac{1}{ax})^0(2ax^2)^5 = 1 \times 1 \times 32a^5x^{10}[/tex]
The fourth term of the expansion has the constant a,
the coefficient of a is 80x⁴