Answer:
the calculated ratio to the radius of the sodium [tex]r_{100[/tex] / [tex]r_{Na[/tex] is 2645.0
Explanation:
Given the data in the question;
the calculated ratio to the radius of the sodium = [tex]r_{100[/tex] / [tex]r_{Na[/tex]
so from here we can write the number of energy states as 100
The number of energy states; n = 100
A;
We know that the radius of the sodium atom is;
[tex]r_n[/tex] = n²α₀
Now, the value of the Bohr radius; α₀ = 5.29 × 10⁻¹¹ m
so lets determine the radius of the sodium atom; by substituting in our values;
[tex]r_{100[/tex] = (100)² × (5.29 × 10⁻¹¹ m )
[tex]r_{100[/tex] = 5.29 × 10⁻⁷ m
B
given that, the theoretical value of the radius of the sodium is;
[tex]r_{Na[/tex] = 0.2 nm = 2 × 10⁻¹⁰ m
so we calculate the ratio of the radii of the sodium;
[tex]r_{100[/tex] / [tex]r_{Na[/tex] = ( 5.29 × 10⁻⁷ m ) / ( 2 × 10⁻¹⁰ m )
[tex]r_{100[/tex] / [tex]r_{Na[/tex] = 2645.0
Therefore, the calculated ratio to the radius of the sodium [tex]r_{100[/tex] / [tex]r_{Na[/tex] is 2645.0