Answer:
Approximately [tex]1.30 \times 10^{-2}[/tex], assuming that this acid is monoprotic.
Explanation:
Assume that this acid is monoprotic. Let [tex]\rm HA[/tex] denote this acid.
[tex]\rm HA \rightleftharpoons H^{+} + A^{-}[/tex].
Initial concentration of [tex]\rm HA[/tex] without any dissociation:
[tex][{\rm HA}] = 0.730\; \rm mol \cdot L^{-1}[/tex].
After [tex]12.5\%[/tex] of that was dissociated, the concentration of both [tex]\rm H^{+}[/tex] and [tex]\rm A^{-}[/tex] (conjugate base of this acid) would become:
[tex]12.5\% \times 0.730\; \rm mol \cdot L^{-1} = 0.09125\; \rm mol \cdot L^{-1}[/tex].
Concentration of [tex]\rm HA[/tex] in the solution after dissociation:
[tex](1 - 12.5\%) \times 0.730\; \rm mol \cdot L^{-1} = 0.63875\; \rm mol\cdot L^{-1}[/tex].
Let [tex][{\rm HA}][/tex], [tex][{\rm H}^{+}][/tex], and [tex][{\rm A}^{-}][/tex] denote the concentration (in [tex]\rm mol \cdot L^{-1}[/tex] or [tex]\rm M[/tex]) of the corresponding species at equilibrium. Calculate the acid dissociation constant [tex]K_{\rm a}[/tex] for [tex]\rm HA[/tex], under the assumption that this acid is monoprotic:
[tex]\begin{aligned}K_{\rm a} &= \frac{[{\rm H}^{+}] \cdot [{\rm A}^{-}]}{[{\rm HA}]} \\ &= \frac{(0.09125\; \rm mol \cdot L^{-1}) \times (0.09125\; \rm mol \cdot L^{-1})}{0.63875\; \rm mol \cdot L^{-1}}\\[0.5em]&\approx 1.30 \times 10^{-2} \end{aligned}[/tex].