Respuesta :
Answer:
[tex]x = \frac{7 + \sqrt{65}}{2} \ , \ x = \frac{7 - \sqrt{65}}{2}[/tex]
Step-by-step explanation:
[tex]x^2 = 7x + 4 \\\\x^2 - 7x - 4 = 0\\\\ a = 1 \ , \ b = - 7 , \ c \ = \ - 4 \\\\x = \frac{-b \pm \sqt{b^2 - 4ac }}{2a}\\\\Substitute \ the \ values : \\\\x = \frac{7 \pm \sqrt{7^2 - (4 \times 1 \times -4)}}{2 \times 1}\\\\x = \frac{7 \pm \sqrt{49 + 16}}{2 }\\\\x = \frac{7 \pm \sqrt{65}}{2 }\\\\x = \frac{7 + \sqrt{65}}{2}\ , \ x = \frac{7 - \sqrt{65}}{2}[/tex]