Respuesta :

Given:

A quadrilateral DEFG inscribed in a circle.

[tex]m\angle D=60^\circ, m\angle E=m^\circ, m\angle F=2k^\circ, m\angle G=60^\circ[/tex]

To find:

The value of variables [tex]m[/tex] and [tex]k[/tex].

Solution:

If a quadrilateral is inscribed in a circle then it is a cyclic quadrilateral. The opposite angles of a cyclic quadrilateral angle supplementary angles.

Quadrilateral DEFG inscribed in a circle. So, quadrilateral DEFG is a cyclic quadrilateral.

[tex]m\angle D+m\angle F=180^\circ[/tex]                [Supplementary angle]

[tex]60^\circ+2k^\circ=180^\circ[/tex]

[tex]2k^\circ=180^\circ-60^\circ[/tex]

[tex]2k^\circ=120^\circ[/tex]

Divide both sides by 2.

[tex]k^\circ=\dfrac{120^\circ}{2}[/tex]

[tex]k^\circ=60^\circ[/tex]

[tex]k=60[/tex]

Similarly,

[tex]m\angle E+m\angle G=180^\circ[/tex]

[tex]m^\circ+60^\circ=180^\circ[/tex]

[tex]m^\circ=180^\circ-60^\circ[/tex]

[tex]m^\circ=120^\circ[/tex]

[tex]m=120[/tex]

Therefore, the values of the variables are [tex]m=120[/tex] and [tex]k=60[/tex].