Find the value of each variable. PLEASE HELP ME
![Find the value of each variable PLEASE HELP ME class=](https://us-static.z-dn.net/files/dc4/0d9cf6539bf0e45b8fd2b480970d2928.png)
Given:
A quadrilateral DEFG inscribed in a circle.
[tex]m\angle D=60^\circ, m\angle E=m^\circ, m\angle F=2k^\circ, m\angle G=60^\circ[/tex]
To find:
The value of variables [tex]m[/tex] and [tex]k[/tex].
Solution:
If a quadrilateral is inscribed in a circle then it is a cyclic quadrilateral. The opposite angles of a cyclic quadrilateral angle supplementary angles.
Quadrilateral DEFG inscribed in a circle. So, quadrilateral DEFG is a cyclic quadrilateral.
[tex]m\angle D+m\angle F=180^\circ[/tex] [Supplementary angle]
[tex]60^\circ+2k^\circ=180^\circ[/tex]
[tex]2k^\circ=180^\circ-60^\circ[/tex]
[tex]2k^\circ=120^\circ[/tex]
Divide both sides by 2.
[tex]k^\circ=\dfrac{120^\circ}{2}[/tex]
[tex]k^\circ=60^\circ[/tex]
[tex]k=60[/tex]
Similarly,
[tex]m\angle E+m\angle G=180^\circ[/tex]
[tex]m^\circ+60^\circ=180^\circ[/tex]
[tex]m^\circ=180^\circ-60^\circ[/tex]
[tex]m^\circ=120^\circ[/tex]
[tex]m=120[/tex]
Therefore, the values of the variables are [tex]m=120[/tex] and [tex]k=60[/tex].